Stieltjes Interlacing of Zeros of Jacobi Polynomials from Different Sequences
نویسندگان
چکیده
A theorem of Stieltjes proves that, given any sequence {pn}n=0 of orthogonal polynomials, there is at least one zero of pn between any two consecutive zeros of pk if k < n, a property called Stieltjes interlacing. We show that Stieltjes interlacing extends, under certain conditions, to the zeros of Jacobi polynomials from different sequences. In particular, we prove that the zeros of P n+1 interlace with the zeros of P α+k,β n−1 and with the zeros of P α,β+k n−1 for k ∈ {1, 2, 3, 4} as well as with the zeros of P α+t,β+k n−1 for t, k ∈ {1, 2}; and, in each case, we identify a point that completes the interlacing process. More generally, we prove that the zeros of the kth derivative of P n , together with the zeros of an associated polynomial of degree k, interlace with the zeros of P n+1, k, n ∈ N, k < n.
منابع مشابه
Stieltjes interlacing of zeros of Laguerre polynomials from different sequences
Stieltjes’ Theorem (cf. [11]) proves that if {pn}n=0 is an orthogonal sequence, then between any two consecutive zeros of pk there is at least one zero of pn for all positive integers k, k < n; a property called Stieltjes interlacing. We prove that Stieltjes interlacing extends across different sequences of Laguerre polynomials Ln, α > −1. In particular, we show that Stieltjes interlacing holds...
متن کاملOn the interlacing of zeros of linear combinations of Jacobi polynomials from different sequences
We investigate the interlacing of the zeros of linear combinations pn+ aqm with the zeros of the components pn and qm, where {pn} ∞ n=0 and {qm} ∞ m=0 are different sequences of Jacobi polynomials. The results we prove hold when pn and qm are Jacobi polynomials P (α,β) n (x) and P (α,β) m (x) for certain values of α and β with m = n or m = n−1. Numerical counterexamples are given in situations ...
متن کاملInterlacing and asymptotic properties of Stieltjes polynomials
Polynomial solutions to the generalized Lamé equation, the Stieltjes polynomials, and the associated Van Vleck polynomials have been studied since the 1830’s, beginning with Lamé in his studies of the Laplace equation on an ellipsoid, and in an ever widening variety of applications since. In this paper we show how the zeros of Stieltjes polynomials are distributed and present two new interlacin...
متن کاملZeros of Quasi-Orthogonal Jacobi Polynomials
We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α > −1, −2 < β < −1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P (α,β) n and P (α,β+2) n are interlacing, holds when the parameters α and β are in the range α > −1 and −2 < β < −1. We prove that t...
متن کاملApplications of the monotonicity of extremal zeros of orthogonal polynomials in interlacing and optimization problems
We investigate monotonicity properties of extremal zeros of orthogonal polynomials depending on a parameter. Using a functional analysis method we prove the monotonicity of extreme zeros of associated Jacobi, associated Gegenbauer and q-Meixner-Pollaczek polynomials. We show how these results can be applied to prove interlacing of zeros of orthogonal polynomials with shifted parameters and to d...
متن کامل